
Key information:

Assembler-
• converts the low level assembly programming language into machine code.
Interpreter-
• converts code one line at a time, into machine code and executes it.
Compiler-
• Converts high level programs into machine code for execution at a later time (in 1 big go

NOT line by line)

Card: 8.1

Interpreter Compiler

Benefit=
Interpreters are easier to use as
errors are reported and corrected as
execution continues.

Benefit=
Compilation requires analysis and the generation
of the code only once o Compilers can produce
much more efficient object code than interpreters
thus making the compiled programs to run faster.

Drawback=
The interpreter would be slower
than a compiler as it would translate
the same statements within the loop
over and over again.

Drawback=
Displaying multiple errors the same time on the
whole means compilers tend to be more difficult
to use.

SJHS

Key information:

Card: 8.2

The compilation process
A set of stages completed when compiling a program

Stage 1 Lexical analysis

Stage 2 Symbol table construction

Stage 3 Syntax analysis

Stage 4 Semantic analysis

Stage 5 Code generation
Machine code is generated

Stage 6 Code optimisation

SJHS

Key information:

Card: 8.3

Lexical analysis
• Comments and unneeded

spaces are removed.
• Keywords, constants and

identifiers are replaced by
'tokens'.

Stage
1

Stage
2

Symbol table construction
• A table that holds the addresses of the variables, labels and

subroutines

Syntax analysis
• Tokens are checked to see if they match the spelling and grammar

expected, using standard language definitions.
• This is done by parsing each token to determine if it uses the correct

syntax for the programming language
• If syntax errors are found, error messages are produced

Stage
3

SJHS

Key information:

Card: 8.3

Code generation
Machine code is generated

Stage
5

Stage
6

Code optimisation
Code optimisation may be employed to make it more
efficient/faster/less resource intensive.

Stage
4

Semantic analysis
• Variables are checked to ensure that they are of the correct data

type, e.g. real values are not being assigned to integers.
• Operations are checked to ensure that they are legal for the type

of variable being used, e.g. you would
• not try to store the result of a division operation as an integer.SJHS

Key information:

Card: 8.4

Logical error
• A mistake in the program instructing the program

to do the wrong thing (1)
• The program works but produces the wrong output

(1)

Logical error

Example:
GrossPrice = NetPrice – VAT
instead of
GrossPrice = NetPrice + VAT

Execution error

Example:
Attempt to read past the end
of file / attempt
dividing by zero

Execution error
When the program unexpectedly stops (1) as a result
of an invalid operation during execution (1)

Linking error
When a compiler can’t find the sub procedure (1) as the
programmer might have declared it incorrectly / did not
instruct the compiler to
include the sub program (library) in the code. (1)

Linking error

Example:
When a library has not been
included in the code but has
been called

SJHS

Key information:

Card: 8.4

Rounding error
When the program rounds a
real number to a fixed number of decimal places (1)
resulting in losing some information as the number
becomes less accurate (1)

Rounding error

Example:
3.125 rounding to 3.13

Truncation error

Example:
3.125 truncating to 3.12

Truncation error
When the program truncates a real number to a fixed
number of decimal
places (1) resulting in losing some information as the
number becomes less accurate (1)

Syntax error
Programming languages have rules for spelling, punctuation and

grammar, just like the English language. In programming, a

syntax error occurs when:

● there is a spelling mistake

● there is a grammatical mistake

Syntax error

Example:
print(“Hello”SJHS

