Year 11 Chemistry									
1. Ionic Bonding	1		2. Covalent Bonding	$\bigcirc \bigcirc \bigcirc$	<u>3. Metallic</u>				
Occurs between a metal and a non-metal to form a giant ionic lattice			Occurs between non-metal atoms	Properties of					
Metal will lose electrons to form a positive ion			Covalent bond – a shared pair of electrons	conductivity, c Metallic bondi					
Non-metal will gain electrons to form a negative ion			Rule – however many electrons an atoms nee	Metals are ma					
Ionic bond – strong electrostatic force of attraction between ions of opposite charges			Forms simple covalent molecules. There are forces between molecules which means they temperature.	Metals are abl electricity bec electrons are					
Ionic lattices have high melting points because the attraction between ions is string and require a lot of energy to break			<u>Diamond</u> • Each C atom covalently bonded to 4 others others	able to carry of charge					
Ionic lattices conduct electricity when molten or in solution because ions are free to move and carry an electric charge.			 Tetrahedral shape Very strong No free electrons Fourth elect to move and 	yers s between layers ron from each C is free carry an electric charge	Metals are dif because there electrostatic between posit negative elect				
			• Layers slide each other Diamond and graph are giant covalent structures	over ite	means a lot of needed to brea attraction. When a force ion slide over This makes me				
4. Nanoscience	and Smart Materials		<u>5. Acids</u>		<u>6a. Making</u>				
Nanoscience is the study or particles between 1-100nm. One nanometre is a billionth of a metre!			Acid - a substance that produces H ⁺ ions in Base - a substance that neutralises an acid	1. React					
*Nano-sized silver; antibacterial, antiviral and antifungal. Used in plasters, socks and in hospitals. *Nano-sized titanium dioxide; reflect UV light. Used in sunscreens.			water Alkali - a base dissolved in water Acids & alkalis are classified using the pH s	Beaker					
They are also used in self-cleaning windows as they can breakdown dirt and spread out water.			1 2 3 4 5 6 7 8 9 10 11 12 1	Hot soluti after read					
Key issue: long tern	n effects are unknown!		strong acids weak acids weak alkalis strong alk	ralis	6h Tituati				
<u>Smart materials:</u> m properties	aterials that change reversib	ly with a change in	Strength - how many acid particles ionise	in solution	*Allow us to c				
Smart Material Property Lises			Acids - pH lower than 7	concentratior					
Thermochromic	Change colour in response to heat	Mood rings, mugs, baby spoons, battery power indicators	Neutral solution - pH 7 Alkalis - pH higher than 7	*Allows us to crystals of a					
Photochromic	Change colour in response to light	Sunglasses lenses	Reactions of acids metal, second name is from the acid						
Shape memory alloy	Pseudoelasticity and shape retention	Glasses frames	acid + metal → salt + hydrogen Acid + metal oxide (base) → salt + water	To produce pu					
Shape memory polymer	Shape retention when heated	Retainers	Acid + metal hydroxide (alkali) → salt + water Acid + metal carbonate → salt + water + carbon dioxideSulfuric acid - sulfate Nitric acid - nitrate Ethanoic acid - ethanoate		tind the exac				
Hydrogel	Absorb large quantities of water	Nappies, magic snow			aikali needed				

bonding

metals: Strong, high melting points, electrical good conductors of heat, malleable, ductile ling-layers of atoms, sea of electrons.

ade up of a regular arrangement of positive rounded by a sea of delocalised electrons.

crystals of a soluble salt

2. Filter excess solid

3. Evaporate water

<u>ions</u>

determine the n of a solution produce pure soluble salt

ure crystals of a salt, ct volumes of acid and and then repeat but without the indicator.

Year 11 Chemistry

7. Reactivity of metals	Most reactive	<u>8a. Blast F</u>	urnace	iron core, colie and limestone	9. Chemic
Metals are ordered in the reactivity from most reactive to least reactive. A more reactive metal will displace a less reactive metal from a solution of its salt. Many metals are found in the ground as ores . Generally, they have been reacted with oxygen to form a compound and we need to remove the oxygen from the compound to extract the metal that we want. Haematite - Iron oxide, Fe_2O_3		Used to extra	ct iron from iron ore		Exothermic Endothermi
		Raw materials: *Iron ore - source of iron *Coke - reducing agent/fuel *Limestone - removes impurities		hot air blast	Bond breaki exothermic
		1. Coke reacts with oxygen to corm carbon dioxide $C + O_2 \rightarrow CO_2$ 2. Carbon dioxide reacts with more coke, forms carbon monoxide $CO_2 + C \rightarrow 2CO$ 3. Carbon monoxide reduces iron oxide $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ 4. Limestone reacts with silicon dioxide to from calcium silicate (slag) $CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2$			Activa ener Botentia Reacta energy release Reac
Bauxite – Aluminium oxide, Al ₂ O ₃		<u>OD. Electrolysis</u> The splitting up of compounds using electricity			E
Thermite reaction *Used to weld train tracks together *Produces molten iron *Competition reaction Gold		Aluminium oxide is dissolved in molten cryolite to lower its melting temperature, therefore saving money.			Ove
' Aluminium + Iron oxide → Iron + Aluminium oxic	de	Don't	PANIC - Positive i	Positive ions go to the cathode e.g. Al ³⁺ + 3e ⁻ → Al	A negative
Oxidation – Gain of oxygen Reduction – Loss of oxygen		<u>A</u> node,	legative Is Cathode.	Negative ions go to the anode e.g. $2O^{2^-} \rightarrow O_2 + 4e^-$	A positive
 10. Fractional Distillation Cool (25°C) Refinery gases Refinery gases Casoline (Petrol) Naphtha Cool (25°C) Refinery gases Cool (25°C) Refinery gases Cool (25°C) Refinery gases The fractions contain mixtures of hydrocarbons (alkanes) with similar boiling points. The compounds in the fractions have increasing chain lengths and boiling points as you go down the fractionating column. The shorter the hydrocarbon chain 		11. Combustion Hydrocarbons and other fuels undergo combustion with oxygen to produce carbon dioxide and water.Hydrogen has advantages and disadvantages as a fuel. For example, it only produces water when it burns, however it is very flammable and can explode so is potentially more dangerous than oil based fuels. To obtain the hydrogen also requires a large amount of energyThe fire triangle indicates the components required for fire and is			12. Organi Alkanes * General for * C-C single b * Saturated Alkenes * General for * C=C double b
		used in fire fighting and prevention.			Test for an a water and it v
the more useful it Crude oil is heated	is as a fuel. I until it	Removing heat	Use water e.g. in a house fire or a bonfire		Alkene monon polymerisatio
Heated crude oil Fuel Oil Residue Hot (350°C) Fuel Oil Residue Hot (350°C) Vapourises, vapours column until they r temperature lower point, they conden collected.	s rise up the each a than their boiling se and are	Removing oxygen Removing	Use a fire blanket e.g. person on fire CO_2 fire extinguisher e.g. aeroplane fire	OT IN INT	n H C:
Catalytic cracking can be used hydrocarbon chains into short hydrocarbons using heat and c	Catalytic cracking can be used to turn longer hydrocarbon chains into shorter, more useful hydrocarbons using heat and a nickel catalyst.		in a forest fire Turn off the gas supply e.g. in a natural gas fire.	FUEL	н

Ethene

<u>cal reactions and energy</u>

reactions that give out heat energy
 ic – reactions that take in heat energy

ing is endothermic and bond making is

value tells us the reaction is **exothermic**

value tells us the reaction is endothermic

mers can be added together in an **addition on** reaction to form **polymers**

